ENQUIRE PROJECT DETAILS BY GENERAL PUBLIC

Project Details
Funding Scheme : General Research Fund
Project Number : 14204623
Project Title(English) : Coherent Microresonator Networks for Reconfigurable Photonic Integrated Circuits 
Project Title(Chinese) : 基於微環的可編程片上相干光子學網絡的研究 
Principal Investigator(English) : Prof Tsang, Hon Ki 
Principal Investigator(Chinese) : 曾漢奇 
Department : Dept of Electronic Engineering
Institution : The Chinese University of Hong Kong
Co - Investigator(s) :
Prof Shu, Chester Ching-tat
Panel : Engineering
Subject Area : Electrical & Electronic Engineering
Exercise Year : 2023 / 24
Fund Approved : 1,017,450
Project Status : On-going
Completion Date : 31-12-2026
Abstract as per original application
(English/Chinese):
Field-Programmable Gate Arrays (FPGA) offer electronic engineers a generic component which can be configured for use in different applications. The widespread commercial success of FPGAs stems from their existence as standard stocked components, readily available without the many months waiting required for the fabrication of Application-Specific-Integrated-Circuits (ASICs). FPGAs may have worse performance than ASICs, but their more rapid development cycle made possible by programming an off-the- shelf component, have enabled system designers to quickly bring products to market. This paradigm has proven highly successful in microelectronics. In this project we seek to realize the same paradigm in photonics. We propose to create a new type of reconfigurable photonic integrated circuit (RPIC). The proposed RPIC will reduce the development time of silicon photonics prototypes for many applications from the many months currently needed to a few days. This project seeks to advance the technology for RPICs with a new coherent photonic network architecture. The proposed RPIC may be configured for different application scenarios including low-latency unitary matrix processors, advanced programmable optical filters, high speed coherent optical modulators and receivers, programmable optical delay lines, and optical signal processors, all based on the same coherent photonic circuit. Our aim is to realize a RPIC which can be tested and configured for different applications. The RPIC will offer the functional capabilities of spectral analysis, polarization analysis, polarization unscrambling, crosstalk unscrambling, optical delay, optical signal processing and other arbitrary unitary matrix operations in the optical domain, while providing some commonly required functionality including spectral filtering, optical switching and implementation of advanced optical modulation formats for high-capacity data communications. Today’s Application-specific Photonic Integrated Circuits (ASPIC) typically use many common building blocks combined together in a photonic circuit. This project aims to put many of those same common elements together in a novel programmable mesh network architecture that can enable reconfiguration of the chip function using control electronics. Our proposed approach will use a coherent network of microring resonators. The microring resonators naturally introduce recursion and infinite impulse response (IIR) elements in the coherent network, unlike the finite impulse response (FIR) of previously explored coherent Mach Zehnder networks. The proposed reconfigurable coherent network of microring resonators has the advantage of smaller size and a better capability for the implementation of wide free spectral range spectral filters, unlike the much larger conventional Mach Zehnder based coherent networks.
現場可編程門陣列(FPGA)為電子工程師提供了一種通用組件,該通用組件可根據應用場景進行相應的配置。商業化FPGA芯片的廣泛應用歸功於FPGA作為標準庫存組件無需在製造時花費數月即可輕鬆獲得。 FPGA的性能或許稍遜於ASIC,但通過對FPGA的現成組件進行編程,可以實現更快的開發週期,從而使系統設計人員能夠更快速將產品推向市場。事實證明,這種範例在微電子領域非常成功。 在這個項目中,我們在光子學中尋求實現相同的範例。我們提出了一種新型的可重構光子學集成芯片(RPIC)。 RPIC 可將許多矽光子應用原型的開發週期從目前需要的幾個月縮短到幾天。該項目尋求通過新的相干光子學網絡架構來推進RPIC技術。我們提出的RPIC可以針對不同的應用場景進行配置,應用場景包括但不限於酉矩陣處理器、可編程光濾波器、高速相干光調製器和接收器、可編程光延遲線和光信號處理器,所有這些功能都可由同一光子學集成芯片實現。 RPIC可以針對不同應用場景進行測試和配置。 RPIC將提供光譜分析、偏振分析、偏 振解擾、串擾解擾、光延遲、光信號處理和光學乘法運算的功能,同時提供一些常用的功能,包括光譜濾波、光開關和用於實施高容量數據通信的先進光調製格式等。目前的專用光子學集成芯片(ASPIC)通常使用許多常見的基礎結構器件組合在一起形成專用的光子學系統。該項目旨在將許多相同的通用元件放在一個新穎的可編程網狀網絡架構中,該架構可以通過控制電子設備重新配置芯片功能。我們提出的方法將使用基於微環諧振器相干光子學網絡。不同於廣泛探索的相干馬赫·曾德爾光子學網絡的有限脈衝響應(FIR),微環諧振器在相干光子學網絡中引入遞歸,在實現無限脈衝響應(IIR)時具有天然優勢,同時,我們提出的基於微環諧振器的可重構相干光子學網絡具有更小的尺寸和更寬的自由光譜範圍等優點。
Research Outcome
Layman's Summary of
Completion Report:
Not yet submitted

  SCREEN ID: SCRRM00542